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BACKGROUND: Prenatal cadmium (Cd) exposure has been recognized to restrict growth, and male and female fetuses may have differential susceptibil-
ity to the developmental toxicity of Cd. Imprinted genes, which exhibit monoallelic expression based on parent of origin, are highly expressed in pla-
cental tissues. The function of these genes is particularly critical to fetal growth and development, and some are expressed in sex-specific patterns.

OBJECTIVES: We aimed to examine whether prenatal Cd associates with the expression of imprinted placental genes, overall or in fetal sex-specific
patterns, across two independent epidemiologic studies.

METHODS: We tested for Cd–sex interactions in association with gene expression, then regressed the placental expression levels of 74 putative
imprinted genes on placental log-Cd concentrations while adjusting for maternal age, sex, smoking history, and educational attainment. These models
were performed within study- and sex-specific strata in the New Hampshire Birth Cohort Study (NHBCS; n=326) and the Rhode Island Child
Health Study (RICHS; n=211). We then used fixed-effects models to estimate the sex-specific and overall associations across strata and then examine
heterogeneity in the associations by fetal sex.
RESULTS: We observed that higher Cd concentrations were associated with higher expression of distal-less homeobox 5 (DLX5) (p=0:000025), and
lower expression of h19 imprinted maternally expressed transcript (H19) (p=0:00027) and necdin, MAGE family member (NDN) (p=0:00064)
across study and sex-specific strata, while three other genes [carboxypeptidase A4 (CPA4), growth factor receptor bound protein 10 (GRB10), and
integrin-linked kinase (ILK)] were significantly associated with Cd concentrations, but only among female placenta (pinteraction <0:05). Additionally,
the expression of DLX5, H19, and NDN, the most statistically significant Cd-associated genes, were also associated with standardized birth weight
z-scores.

DISCUSSION: The differential regulation of a set of imprinted genes, particularly DLX5, H19 and NDN, in association with prenatal Cd exposure may
be involved in overall developmental toxicity, and some imprinted genes may respond to Cd exposure in a manner that is specific to infant gender.
https://doi.org/10.1289/EHP4264

Introduction
Cadmium (Cd) is an ubiquitous environmental contaminant that
bioaccumulates in plants grown in contaminated soils, resulting
in human exposure when those plants are consumed (Khan et al.
2017). Though Cd is most commonly recognized for its roles in
kidney damage, bone and joint problems, and various cancers
(ATSDR 2012), it is also a developmental and reproductive toxi-
cant (Thompson and Bannigan 2008). Maternal Cd not trans-
ferred to the fetus tends to accumulate in the placenta, making
the placenta a useful biomarker of maternal Cd exposures and
burden during pregnancy (Piasek et al. 2014). Cd increases oxi-
dative stress, interrupts cell cycles, induces apoptosis and cell
death (Rani et al. 2014), and acts as an endocrine disruptor,
which may be particularly important for reproductive and

developmental toxicity, even at relatively low exposure levels
(Knazicka et al. 2015). Thus, despite the protective role of the
placenta in limiting direct fetal exposure to Cd, toxic effects on
this critical developmental organ may in turn elicit adverse
impacts on fetal development.

Numerous epidemiologic studies of prenatal Cd exposure
have observed associations with anthropometric measures at birth
(Al-Saleh et al. 2014, 2015; Wang et al. 2016) and/or fetal
growth restriction (Llanos and Ronco 2009; Wang et al. 2018),
impaired cognition in childhood (Kippler et al. 2012b), pree-
clampsia (Laine et al. 2015; Wang et al. 2018), and impaired zinc
(Zn) transport (Kippler et al. 2010). Additionally, multiple stud-
ies have implicated epigenetic dysregulation (Everson et al.
2018; Kippler et al. 2013; Mohanty et al. 2015; Sanders et al.
2014) and/or altered expression of genes related to oxidative and
inflammatory response (Everson et al. 2016, 2017) as compo-
nents underlying how Cd might impact the functions of develop-
mental tissues and lead to these adverse pregnancy and birth
outcomes.

Recent publications have also suggested that imprinted genes,
which have monoallelic expression patterns dependent on the
parent of origin, may be particularly susceptible to Cd-associated
differential methylation and/or expression. Xu et al. (2017) used
a mouse model to identify that the placental expression of pater-
nally expressed gene 10 (PEG10) can be significantly down-
regulated and cyclin dependent kinase inhibitor 1C (CDKN1C)
significantly up-regulated in response to higher prenatal Cd expo-
sures (Xu et al. 2017). Cowley et al. (2018) performed a genome-
wide study in human maternal and cord blood samples to identify
differentially methylated regions (DMRs) that associated with
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prenatal Cd exposure, and found that Cd-associated DMRs were
significantly enriched for imprinting control regions (ICR) in
both maternal and fetal blood (Cowley et al. 2018). These find-
ings are particularly important because imprinted genes play criti-
cal roles in the fetal growth and development, and their
dysregulation can result in numerous developmental disorders
(Cassidy and Charalambous 2018).

Though studies have begun to implicate imprinted genes as
potential targets of prenatal Cd toxicity, evidence of this in
humans is still quite limited. In fact, most studies in human popu-
lations have focused on exposure associated variation in the
DNA methylation of ICRs and not on the functional expression
of those genes. The current study aims to address these gaps by
examining how placental Cd concentrations are associated with
the placental expression of both known and putative imprinted
genes across two large independent U.S. samples, the New
Hampshire Birth Cohort Study (NHBCS, https://www.dartmouth.
edu/∼childrenshealth/) and the Rhode Island Child Health Study
(RICHS, https://www.rhodeislandkidshealth.com/). There are also
data suggesting that the influence of Cd exposure on molecular
activities, as well as pregnancy and birth outcomes, differ by the
sex of the fetus. Cd-associated reductions in anthropometric meas-
ures at birth appeared to be more common among female infants in
two prior studies (Kippler et al. 2012a; Taylor et al. 2016), and fetal
epigenetic response to prenatal Cd exposure also appeared to differ
by fetal sex in one study (Kippler et al. 2013). Thus, to further elu-
cidate whether prenatal Cd elicits sex-specific responses, we
assessed whether Cd-associated variations in placental imprinted
expression differed by fetal sex.

Methods

New Hampshire Birth Cohort Study
The NHBCS is an ongoing birth cohort initiated in 2009 (Gilbert-
Diamond et al. 2016). This study includes pregnant women who
used an unregulated private well as a primary source of drinking
water, were between 18 and 45 y of age, and that attended one of
the study clinics in New Hampshire for prenatal care. All partici-
pants provided written informed consent in accordance with the
requirements of the Committee for the Protection of Human
Subjects at Dartmouth College. For the current study, we included
placental samples from participants who were enrolled between
February 2012 and September 2013, for whom placenta were
selected for genetic, epigenetic, and exposure biomarker assays.
From this sample, we included all participants who had complete
data on imprinted gene expression and placental concentrations of
Cd (n=326). Sociodemographic, lifestyle, and anthropometric
data were obtained via self-administered questionnaires and medi-
cal record abstraction.

Rhode Island Child Health Study
The RICHS includes mother–infant pairs with healthy and suc-
cessful pregnancies at the Women and Infants’ Hospital in
Providence, Rhode Island, United States, that were between
September 2010 and February 2013 (Appleton et al. 2016).
Mothers younger than 18 y of age, pregnancies resulting in pre-
term birth, or infants born with congenital or chromosomal
abnormalities were excluded from the RICHS. To examine con-
trasts between babies born large, adequate, or small for gesta-
tional age (LGA, AGA, or SGA), infants born SGA (≤10th birth
weight percentile) or LGA (≥90th birth weight percentile) were
oversampled, then infants born AGA (between the 10th and 90th
birth weight percentiles) were enrolled who matched on gesta-
tional age and maternal age. All protocols were approved by the

institutional review boards at the Women and Infants Hospital of
Rhode Island, Dartmouth College, and Emory University, and all
participants provided written informed consent. The current study
included all mother–infant pairs for whom placental imprinted
gene expression and Cd concentrations were performed (n=211).
Sociodemographic, lifestyle, and anthropometric data were
obtained via interviewer-administered questionnaires and medical
record abstraction.

Covariates
We adjusted for variables that have been associated with Cd ex-
posure and that are recognized as influencing pregnancy and
birth outcomes. Smoking status, highest educational attainment,
and age were observed to be the strongest predictors of urinary
Cd concentrations in a recent study of women and/or children
across 16 European countries (Berglund et al. 2015). Highest
educational attainment was defined as mothers who obtained an
education beyond the high school level vs. those who did not
go beyond high school. Maternal smoking during pregnancy
(MSDP) was defined as any self-reported smoking during any
point of pregnancy vs. those who reported no smoking during
pregnancy. Maternal age was included as a continuous variable.
All models were stratified on fetal sex and were adjusted for
smoking status during pregnancy, highest educational attain-
ment, and maternal age. In RICHS, we also adjusted for mater-
nal race as a dichotomous variable (white vs. nonwhite) since
this sample was racially diverse, whereas in NHBCS, the sam-
ple was homogenous for race, and additional adjustments were
not necessary.

Placental RNA Sampling
Both cohorts followed a similar placental sampling protocol,
obtaining biopsies within 2 h of delivery from the fetal side ad-
jacent to the cord insertion site and free of maternal decidua.
Samples were placed in RNAlater (Life Technologies), then
rinsed, frozen, and stored at −80�C. RNA was extracted with
the RNAeasy mini kit (#74,106; Qiagen) and subsequently
stored at −80�C. RNA quality and integrity were assessed via
the NanoDrop™ ND 1000 spectrophotometer (Thermo Fisher)
and the Agilent Bioanalyzer 2100 (Agilent).

Imprinted Gene Expression
A set of 108 candidate known or putative imprinted genes were
measured via a custom nCounter® (NanoString Technologies)
panel in RICHS; the probe selection, design, and normalization
methods are described in detail elsewhere (Kappil et al. 2015).
Of these genes, 74 were also measured in the NHBCS using the
same technology and normalization techniques; annotations for
these genes are provided in Excel Table S1. Briefly, the raw
nCounter® data were normalized against the geometric mean of
positive controls, and negative controls were used to determine
background noise levels. Samples with expression values that
were indistinguishable from noise for more than half of the candi-
date genes, or those with expression levels >2 standard devia-
tions for more than 10 genes were excluded. Normalized counts
were log2 transformed, and batch effects were removed using
ComBat from the sva package (Leek et al. 2012). We also com-
pared the expression levels measured via NanoString nCounter to
those measured via RNA-Seq, which we have previously pub-
lished on (Everson et al. 2018); 69 of the 74 genes mapped to the
same gene IDs in the RNAseq data. Overall, 56 of the 69 genes
exhibited positive and statistically significant correlations
between mRNA measured via NanoString and RNA-Seq (σ
ranged from 0.14 to 0.75, with a mean rho of 0.40).

Environmental Health Perspectives 057005-2 127(5) May 2019

https://www.dartmouth.edu/%7Echildrenshealth/
https://www.dartmouth.edu/%7Echildrenshealth/
https://www.rhodeislandkidshealth.com/


Cadmium Quantification
Placental concentrations of Cd were quantified in both cohorts at
the Dartmouth Trace Elements Analysis Core via inductively
coupled plasma mass spectrometry; details of the processing are
described elsewhere (Punshon et al. 2016). Only three NHBCS
samples and none of the RICHS samples yielded undetectable Cd
concentrations. Samples with nondetectable concentrations were
assigned a value equal to the minimum detectable values.
Placental Cd concentrations were log transformed to better ap-
proximate a normal distribution.

Statistical Analyses
All statistical analyses were conducted in R (version 3.4.4; R
Project, http://www.R-project.org/). We used the limma package
with standard errors estimated via an empirical Bayes method
(Ritchie et al. 2015) to assess the relationships between log-Cd and
placental imprinted expression. First, we tested the for the presence
of an interaction between log-Cd and fetal sex by regressing log2
imprinted gene expression on log-Cd, sex, and an interaction term
(log-Cd � sex). Overall estimates of interaction across RICHS and
NHBCS were estimated with inverse variance–weighted fixed-
effects models using the metafor package (Viechtbauer 2010), and
models yielding interaction terms with p<0:05 were determined
to be statistically significant. The linear relationships between log-
Cd and log2-imprinted gene expression were then assessed for all
74 genes within four separate strata (by study and sex). Sex-
specific associations, estimated across NHBCS and RICHS, and
overall associations, estimated across all four strata, were esti-
mated with inverse variance–weighted fixed-effects models using
the metafor package (Viechtbauer 2010). To control for multiple
comparisons, we implemented the Benjamini-Hochberg false dis-
covery rate (FDR) adjustment and considered associations that
yielded FDR-adjusted p<0:05 to be statistically significant. Venn
diagrams were produced to show the concordance and the discord-
ance in Cd-associated imprinted gene expression between male
and female samples. Those genes that yielded at least nominally
significant interaction terms (raw p<0:05) and FDR-significant
associations within male or female strata were determined to have
sex-specific associations with Cd. Those genes that yielded FDR-
significant overall associations were determined to have overall
relationships with Cd.

We performed a sensitivity analysis to further interrogate the
potential confounding effects of maternal smoking. For this anal-
ysis, we reproduced the cohort- and sex-specific models between
log-Cd and log2-imprinted gene expression, while excluding all
mothers who reported any smoking during pregnancy. We exam-
ined the correlation between regression coefficients from models
that included and excluded smokers to determine the impact of
MSDP on our overall findings. We performed a second sensitiv-
ity analysis to test for potential interactions with maternal race,
which was restricted to the RICHS sample. For this analysis, we
generated two additional models, first regressing imprinted gene
expression on log-Cd and maternal race (white vs. nonwhite)
while including an interaction term (log-Cd � race) for these vari-
ables, and second additional model testing for the three-way
interaction with log-Cd, sex, and race (log-Cd � sex � race).

We additionally explored whether any of the Cd-associated
genes identified in the current study produced nominally signifi-
cant (p<0:05) associations at epigenetic loci from our prior
epigenome-wide association study (EWAS) (Everson et al. 2018).
We used a Fisher’s exact test to examine whether the number of
nominally significant loci within these genes was greater than
expected, and we considered those genes with p<0:05 to be
enriched for Cd-associated differential methylation. For this test,

we included all CpGs that were ± 1,500 base pairs ðbpÞ of the
start and end coordinates of the imprinted genes that were asso-
ciated with Cd, and we were thus focused on the Cd-associated
variations in cis-acting DNA methylation, as opposed to trans-
acting CpGs or variations in the ICR for which consensus
regions have not been defined for some of the genes that we are
studying. We used all other loci as the background level of
nominal significance.

Finally, we estimated overall and sex-specific associations
between imprinted gene expression with z-scores for birth
weight, birth length, and head circumference at the Cd-
associated genes from the above analysis. z-Scores were calcu-
lated via Fenton growth curves and were standardized by sex
and gestational age (Fenton and Kim 2013). Estimates of asso-
ciation were obtained for either sex-specific or nonsex-specific
strata based on whether the Cd models yielded sex-specific or
nonsex-specific associations. These estimates of association
were obtained via inverse variance–weighted fixed-effects
models using the metafor package.

Results
The RICHS cohort had slightly higher median Cd concentrations
than the NHBCS, with females in RICHS having the highest
reported concentrations (4:38 ng=g) and females in the NHBCS
having the lowest (3:00 ng=g), while the overall distributions of
Cd concentrations between males and females were similar. The
RICHS participants also tended to have lower educational attain-
ment, higher proportions of MSDP, and greater racial/ethnic het-
erogeneity, while the distributions of these variables within
study-specific strata were similar across the sexes, and all four
strata were very similar in terms of average maternal age and ges-
tational duration (Table 1).

Tests for Interactions between Cd and Fetal Sex
First, we tested for potential interactions between sex and log-Cd
while adjusting for maternal age, maternal educational attain-
ment, and MSDP in both cohorts, and adjusted for maternal race/
ethnicity in RICHS (Excel Table S2). We identified five
imprinted genes that yielded nominally significant interaction
terms (p<0:05): integrin-linked kinase (ILK), carboxypeptidase
A4 (CPA4), sarcoglycan epsilon (SGCE), growth factor receptor
bound protein 10 (GRB10), and zinc finger and BTB domain con-
taining 8B (ZBTB8B).

Study- and Sex-Stratified Results
We then assessed the linear relationships between placental log-
Cd and imprinted expression levels using linear models, stratified
by study and fetal sex (Excel Table S3). Among males, the
strongest association in NHBCS was observed at coatomer pro-
tein complex subunit gamma 2 (COPG2) [b1 = 0:362; 95% confi-
dence interval (CI): 0.069, 0.654; p=0:016], which did not yield
an association in RICHS (b1 = 0:089; 95% CI: −0:289, 0.468;
p=0:64), while the strongest association in RICHS was observed
at necdin, MAGE family member (NDN) (b1 = − 0:604; 95%
CI: −0:994, −0:214; p=0:0027), which did yield a similar
association in NHBCS (b1 = − 0:461; 95% CI: −0:929, 0.008;
p=0:054). Among females, the strongest association in NHBCS
was observed at the imprinted maternally expressed transcript,
H19 (b1 = − 0:909; 95% CI: −1:353, −0:465; p=0:000083),
which did not yield an association in RICHS but did yield
somewhat attenuated associations in both male-specific strata
(NHBCS: b1 = − 0:372; 95% CI: −0:778, 0.035; p=0:073;
RICHS: b1 = − 0:400; 95% CI: −0:743, −0:056; p=0:023). The
strongest association among females in RICHS was observed at
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SGCE (b1 = 0:469; 95% CI: 0.172, 0.766; p=0:0023), which did
not yield similar associations within the other strata. Overall, we
observed a greater proportion of nominally significant associa-
tions among females [NHBCS: 17/74 (23%), RICHS: 13/74
(18%)] when compared with males [NHBCS: 4/74 (5%), RICHS:
8/74 (11%)].

Meta-Analysis for Sex-Specific and Overall Associations
We then estimated sex-specific associations for males and
females, meta-analyzed across studies, and identified nine nomi-
nally associated genes among males (Excel Table S4), two of
which yielded FDR-significant associations: NDN and distal-less
homeobox 5 (DLX5). We identified 17 nominally associated
genes among females (Excel Table S5), four of which yielded
FDR-significant associations: GRB10, ILK, CPA4, and thrombo-
spondin type 1 domain containing 7A (THSD7A). Those genes
that yielded nominally significant interaction terms and FDR-
significant associations with log-Cd within the male or female

strata were defined as having sex-specific associations with Cd.
These included GRB10, ILK, and CPA4, all of which were spe-
cific to female placenta (Table 2). Three genes were differentially
expressed with placental Cd concentrations at nominal signifi-
cance levels among both males and females: DLX5, H19, and
insulin-like growth factor 2 antisense 1 (IGF2-AS) (Figure 1A).
We then estimated overall associations, meta-analyzed across all
four strata for all 74 genes (Excel Table S6), and found that seven
genes yielded FDR-significant associations with log-Cd (Table
3), with the most statistically significant Cd-associated genes
being DLX5 (b1 = 0:386; 95% CI: 0.207, 0.566; p=0:000025),
H19 (b1 = − 0:336; 95% CI: −0:516, −0:155; p=0:00027), and
NDN (b1 = − 0:371; 95% CI: −05:85, −0:158; p=0:00064). We
examined whether the Cd-associated genes exhibited absolute
differential expression between male and female placentae, and
found that their overall expression did not differ by sex (Figure
1B; Excel Table S7). There were numerous moderate-to-strong
correlations in the expression levels of these Cd-associated genes,
with the strongest positive correlations between H19 and IGF2

Table 1. Frequencies (percentages) and means± standard deviations ðSDÞ of demographic characteristics and the distributions of placental Cd concentrations
from the New Hampshire Birth Cohort Study (NHBCS) and the Rhode Island Child Health Study (RICHS), stratified by male and female newborns.

Maternal and fetal characteristics stratified by study and
fetal sex

NHBCS (n=326) RICHS (n=211)

Female (n=153) Male (n=173) Female (n=100) Male (n=111)

Maternal educational attainment >HS 138 (90) 153 (88) 75 (75) 88 (79)
≤HS 15 (10) 20 (12) 25 (25) 23 (21)

Maternal smoking during pregnancy None 141 (92) 148 (86) 74 (74) 77 (69)
Any 12 (8) 25 (15) 26 (26) 34 (31)

Maternal race Nonwhite 0 (0) 0 (0) 28 (28) 25 (23)
White 153 (100) 173 (100) 72 (72) 86 (78)

Gestational weeks Mean± SD 39:41± 1:41 39:35± 1:69 39:26± 0:97 39:3± 0:97
Maternal age (years) Mean± SD 31:39± 4:83 31:68± 4:99 30:37± 5:74 29:56± 5:52
Placental Cd (ng/g) Minimum 0.19 0.19 1.22 1.06

25th percentile 2.07 2.14 2.94 2.79
Median 3.00 3.27 4.38 3.97
Mean± SD 3:47± 1:94 3:74± 2:57 4:65± 2:65 4:44± 2:44
75th percentile 4.74 4.62 5.27 5.43
Maximum 10.43 22.31 16.42 17.99

Note: Cd, cadmium; HS, High school; NHBCS, New Hampshire Birth Cohort Study; RICHS, Rhode Island Child Health Study. Maternal variables including education, smoking
behavior, race, and age were collected prior to delivery for NHBCS and postdelivery but prior to discharge for RICHS.

Table 2. Parameter estimates for sex-specific associations between placental log-cadmium (Cd) and gene expression levels that were adjusted for maternal age,
maternal educational attainment, and maternal smoking during pregnancy in all models and additionally adjusted for maternal race/ethnicity in RICHS. This
includes genes that yielded log-Cd � sex interaction p<0:05 and FDR-significant associations within meta-analyzed male- or female-specific strata (FDR
q<0:05). Beta coefficients represent the sex-specific inverse variance–weighted fixed-effects estimates across NHBCS and RICHS for males and females, and
estimates for each gene according to study and sex. Results for all other genes can be found in Excel Tables S3, S4, and S5.

Gene

Strata Model results

Study Sex Beta p-Value FDR q-value 95% CI

CPA4 Sex specific Females −0:56 0.00085 0.021 −0:89, −0:23
Males −0:015 0.92 0.975 −0:30, 0.27

NHBCS Females −0:44 0.057 — −0:89, 0.014
Males −0:083 0.67 — −0:46, 0.30

RICHS Females −0:70 0.0054 — −1:19, −0:21
Males 0.079 0.73 — −0:37, 0.53

GRB10 Sex specific Females 0.42 0.00028 0.018 0.19, 0.64
Males 0.060 0.59 0.899 −0:16, 0.28

NHBCS Females 0.41 0.042 — 0.015, 0.80
Males −0:0032 0.99 — −0:37, 0.36

RICHS Females 0.42 0.0035 — 0.14, 0.70
Males 0.10 0.49 — −0:18, 0.38

ILK Sex specific Females 0.23 0.00049 0.018 0.10, 0.36
Males 0.015 0.84 0.942 −0:13, 0.16

NHBCS Females 0.22 0.023 — 0.032, 0.42
Males 0.040 0.72 — −0:18, 0.26

RICHS Females 0.24 0.010 — 0.058, 0.42
Males −0:0035 0.97 — −0:20, 0.19

Note:—, no data; Cd, cadmium; CI, confidence interval; CPA4, carboxypeptidase A4; FDR, false discovery rate; GRB10, growth factor receptor bound protein 10; ILK, integrin-linked
kinase; NHBCS, New Hampshire Birth Cohort Study; RICHS, Rhode Island Child Health Study.
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Figure 1. (A) Venn diagram showing the overlap in nominally significant associations across females (orange) and males (blue) [data for cadmium (Cd)-
associated expression for males and females are available in Excel Tables S4 and S5, respectively], as well as (B) the average expression levels
(log2-transformed counts) among male and female placenta (data for expression levels among male and female placenta are available in Excel Table S7),
and (C) correlations (black= positive, yellow= inverse) in the expression patterns across these cadmium (Cd)-associated genes.
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(rho= 0:81; p<0:0001) and the strongest inverse correlation
between delta-like noncanonical notch ligand 1 (DLK1) and
SGCE (rho= − 0:63; p<0:0001) (Figure 1C). We then examined
the consistency in the associations across strata using forest plots
of the FDR-significant sex-specific (Figure 2) and overall associ-
ations (Figure 3). Among the genes yielding overall associations
with Cd, DLX5 demonstrated the greatest homogeneity in its
association with log-Cd across all four strata, consistently yield-
ing parameter estimates between 0.239 and 0.484, with only one
CI overlapping the null, while H19 and IGF2-AS yielded more
heterogenous associations with Cd across study- and sex-specific
strata.

Sensitivity Analysis: Reproducibility of Results among
Nonsmokers and Interactions with Maternal Race
We performed a sensitivity analysis to assess whether our results
were robust to the exclusion of samples from those that reported
any MSDP. The coefficients across the 74 genes and all four mod-
els were very highly correlated (rhoMales = 0:921; rhoFemales =
0:954; all p<2:0× 10−16) (Figure S1). The estimated overall and
sex-specific associations yielded almost identical results after
excluding smokers, and all seven genes that yielded FDR-
significant associations with Cd in the original models again

yielded FDR-significant associations when restricting the analysis
to nonsmokers (Excel Table S8). For instance, the overall estimate
of association between log-Cd and DLX5 expression among non-
smokers (b1 = 0:390; 95% CI: 0.184, 0.595; p=0:00021) was
strikingly similar to the association from the original model in
which smokers were included (b1 = 0:386; 95% CI: 0.207, 0.566;
p=0:000025). The estimated associations became modestly stron-
ger among mothers who did not smoke for H19 (b1 = − 0:376;
95% CI: −0:582, −0:171; p=0:00032), for NDN (b1 = − 0:379;
95% CI: −0:620, −0:137; p=0:00217), and for IGF2-AS (b1 =
−0:427; 95% CI: −0:662, −0:192; p=0:00037). Among the sex-
specific associations that we identified, the female-specific rela-
tionships between log-Cd with ILK and CPA4 were modestly atte-
nuated among nonsmokers, although these association were still
substantially larger among female placenta vs. male placenta, and
these female-specific associations were still nominally significant
(p<0:05).

We also tested whether the relationships between log-Cd and
gene expression may have differed by race in the RICHS sample
and whether potential interactions between Cd and race may have
influenced our findings. We found that three genes had nominally
significant interactions (p<0:05; Excel Table S9): cysteine-rich
angiogenic inducer 61 (CYR61; also known as cellular communi-
cation network factor 1; CCN1), cyclin-dependent kinase inhibitor

Table 3. Parameter estimates for overall associations between placental log-Cd and gene expression levels that were adjusted for maternal age, maternal educa-
tional attainment, and maternal smoking during pregnancy in all models and additionally adjusted for maternal race/ethnicity in RICHS. This includes genes
that yielded FDR-significant associations when meta-analyzed across all four sex- and study-specific specific strata (FDR q<0:05). Beta coefficients represent
the inverse variance–weighted fixed-effects estimates across sex- and study-specific specific strata, and estimates for each gene according to study and sex.
Results for all other genes can be found in Excel Tables S3, S4, and S6.

Gene

Strata Model results

Study Sex Beta p-Value FDR q-value 95% CI

DLX5 Overall 0.39 0.000025 0.0018 0.21, 0.57
NHBCS Females 0.48 0.012 — 0.11, 0.86

Males 0.42 0.024 — 0.056, 0.78
RICHS Females 0.24 0.17 — −0:10, 0.58

Males 0.43 0.023 — 0.061, 0.81
H19 Overall −0:34 0.00027 0.010 −0:52, −0:16

NHBCS Females −0:91 0.000083 — −1:35, −0:45
Males −0:37 0.073 — −0:78, −0:035

RICHS Females 0.012 0.94 — −0:30, 0.32
Males −0:40 0.17 — −0:74, −0:056

NDN Overall −0:37 0.00064 0.016 −0:59, −0:16
NHBCS Females −0:47 0.035 — −0:90, −0:033

Males −0:46 0.054 — −0:93, 0.0076
RICHS Females 0.10 0.66 — −0:34, 0.54

Males −0:60 0.0027 — −0:99, −0:21
IGF2-AS Overall −0:35 0.00097 0.018 −0:56, −0:14

NHBCS Females −0:54 0.0081 — −0:93, −0:14
Males −0:39 0.041 — −0:77, −0:017

RICHS Females −0:025 0.93 — −0:58, 0.53
Males −0:28 0.18 — −0:70, 0.13

IGF2 Overall −0:36 0.0019 0.029 −0:59, −0:13
NHBCS Females −0:79 0.0041 — −1:33, −0:26

Males −0:54 0.036 — −1:04, −0:035
RICHS Females 0.029 0.89 — −0:40, 0.46

Males −0:36 0.093 — −0:78, 0.061
GRB10 Overall 0.24 0.0034 0.042 0.078, 0.39

NHBCS Females 0.41 0.042 — 0.015, 0.79
Males −0:0031 0.98 — −0:37, 0.36

RICHS Females 0.42 0.0035 — 0.14, 0.70
Males 0.10 0.49 — −0:18, 0.38

THSD7A Overall 0.36 0.0041 0.043 0.12, 0.61
NHBCS Females 0.39 0.13 — −0:12, 0.89

Males 0.27 0.29 — −0:23, 0.77
RICHS Females 0.69 0.0062 — 0.20, 1.17

Males 0.084 0.74 — −0:42, 0.58

Note: —, no data; Cd, cadmium; CI, confidence interval; DLX5, distal-less homeobox 5; FDR, false discovery rate; GRB10, growth factor receptor bound protein 10; H19, h19
imprinted maternally expressed transcript; IGF2, insulin-like growth factor 2; IGF2-AS, insulin-like growth factor 2 antisense 1; NDN, necdin, MAGE family member; NHBCS, New
Hampshire Birth Cohort Study; RICHS, Rhode Island Child Health Study; THSD7A, thrombospondin type 1 domain containing 7A.
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1C (CDKN1C), and COPG2. We additionally tested for three-
way interactions between log-Cd, race, and sex, and found the
SGCE and CDKN1C exhibited statistically significant interac-
tions (p<0:05; Excel Table S10).

Test of Enrichment for Cd-Associated Differential
Methylation
We explored whether the genes identified in this analysis yielded
associations between placental Cd and DNA methylation in our
previously published EWAS (Everson et al. 2018). From that
prior analysis, 442 epigenetic loci were identified that were
± 1,500 bp of the start and end coordinates for DLX5, H19,
IGF2, IGF2-AS, NDN, CPA4, GRB10, ILK, and THSD7A, which
had been assessed for associations between placental Cd and
DNA methylation. None of these loci were identified as being
differentially methylated at the FDR or suggestive significance
threshold as part of that EWAS, although 9% (42 loci) of these
loci did yield nominally significant associations (Excel Table
S11). All but three of these 42 nominally significant results
were annotated to four genes, and these three genes were signif-
icantly enriched, via Fisher’s exact test, for Cd-associated dif-
ferential methylation: DLX5 (p=0:0071), IGF2-AS (p=0:024),
IGF2 (p=0:027), and GRB10 (p=0:014). For DLX5, the major-
ity of Cd-associated DNA methylation occurred upstream of the
transcription start site, while for IGF2, IGF2-AS, and GRB10,
these loci were not as spatially correlated and resided across
multiple different potential regulatory elements, including the
transcription start sites, gene body, as well as the 3 0 and 5 0
untranslated regions.

Associations between Imprinted Genes and Birth Metrics
and Placental Dimensions
Finally, we tested whether the imprinted genes that associated
with placental Cd concentrations also associated with z-scores for
birth weight, birth length, and head circumference (Table 4).
Most notable, the top three Cd-associated genes, DLX5, H19, and
NDN, were associated with multiple birth size metrics. Higher
expression of DLX5 was associated with smaller birth weight
(b1 = − 0:050; 95% CI: −0:086, −0:014; p=0:0070) and smaller
head circumference (b1 = − 0:045; 95% CI: −0:079, −0:011;

p=0:0089), while higher expression of H19 was associated with
larger birth size (b1 = 0:048; 95% CI: 0.014, 0.082; p=0:0063)
and longer birth length (b1 = 0:050; 95% CI: 0.013, 0.087;
p=0:0083). Higher expression of NDN was also associated
with larger birth weight (b1 = 0:083; 95% CI: 0.041, 0.125;
p=0:000097) and longer birth length (b1 = 0:072; 95% CI:
0.027, 0.117; p=0:0017). Interestingly, many of the imprinted
genes that appeared to have female-specific Cd-associated differ-
ential expression did not tend to yield female-specific associa-
tions with birth size. In fact, higher expression levels of both
CPA4 and ILK were associated with larger z-scores for birth
weight, birth length, and head circumference, but only among
male placenta. We also tested for associations between imprinted
gene expression and placental weight (grams), while adjusting
for gestational age, fetal sex, maternal education, maternal age,
and maternal smoking with linear models in the NHBCS
(n=275) (Excel Table S12). We only observed a significant
association (p=0:046) between CPA4 with placental weight
among males.

Discussion
We identified Cd-associated variations in the expression of
six imprinted genes, DLX5, H19, NDN, IGF2-AS, IGF2, and
THSD7A across studies and within both sexes, as well as sex-
specific associations for CPA4, GRB10, and ILK. Among our top
three hits, higher Cd concentrations were associated with higher
expression of DLX5, lower expression of H19, and lower expres-
sion of NDN. Additionally, higher expression of DLX5 was asso-
ciated with smaller birth weight and smaller head circumference,
while lower expression of H19 was associated with smaller birth
weight and shorter birth length, and lower expression of NDN
was associated with smaller birth weight and smaller birth length.
The placental expression of some of the genes identified in this
study have also been associated with early life growth and cogni-
tive outcomes in prior research from our group but had previ-
ously not been investigated for associations with environmental
exposures. For instance, NDN, H19, and IGF2 were observed to
be more highly expressed from placental tissues of babies born
LGA compared with those born AGA or SGA, and in a factor
analysis, these three genes all loaded onto the same factor that
was also associated with birth weight, which could be an

Figure 2. Forest plot of associations between log-Cd and gene expression for CPA4, GRB10, and ILK within study- and sex-specific strata (orange= female,
blue=male), along with meta-analysis estimates for female- and male-specific expression associations (data for study and sex-specific associations are avail-
able in Excel Table S3, while inverse variance–weighted fixed-effects estimates for males and females are available in Excel Tables S4 and S5, respectively).
Note: Cd, cadmium; Coef., regression coefficient; CPA4, carboxypeptidase A4; GRB10, growth factor receptor bound protein 10; ILK, integrin-linked kinase;
NHBCS, New Hampshire Birth Cohort Study; RICHS, Rhode Island Child Health Study.
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indication that they are involved in a coexpression pattern that
may regulate fetal growth (Kappil et al. 2015). Additionally, the
placental expression of DLX5 loaded onto a different factor that
was also strongly associated with birth size (Kappil et al. 2015),
and DLX5 expression was selected as the third most important
imprinted gene for classifying infant neurobehavioral profiles
(Green et al. 2015). These prior findings provide important con-
text to our results, since prenatal Cd exposure associates with
decreased anthropometric measures at birth (Al-Saleh et al.
2014, 2015; Wang et al. 2016) and/or fetal growth restriction
(Llanos and Ronco 2009; Wang et al. 2018), as well as with
impaired cognition and or neurobehavioral outcomes in child-
hood (Gustin et al. 2018; Kippler et al. 2016).

Our findings of Cd-associated variations in placental expres-
sion may represent important intermediates between prenatal Cd
exposure and developmental outcomes. Experimental and epide-
miologic studies have demonstrated the critical functions that
some these genes play in growth and development. We observed
inverse associations between Cd and H19, IGF2, and IGF2-AS,
an mRNA that is expressed antisense to IGF2 that tends to be
coregulated with IGF2 (Duart-Garcia and Braunschweig 2014).

H19 and IGF2 are some of the most well-studied imprinted genes
due to their coregulation and competing roles in growth and de-
velopment. The IGF2 gene produces a growth factor that pro-
motes both placental and fetal development, and is involved in
nutrient/waste transfer between the mother and the fetus, while
H19, which is transcribed but not translated into a protein, func-
tions as an inhibitor of IGF2 and thus represses placental and fe-
tal growth (Nordin et al. 2014). Variations in fetal genotype,
DNA methylation, and expression of H19/IGF2 have been
observed to be strongly associated with fetal growth (St-Pierre
et al. 2012; Su et al. 2016). On the other hand, the functions of
IGF2-AS have not been as thoroughly studied, and its roles in
growth and development are not well established. Experimental
studies have found that lack of functional IGF2-AS may contrib-
ute to fetal growth restriction due to its status as a paternally
expressed transcript (Duart-Garcia and Braunschweig 2014), and
inhibition of IGF2-AS has been suggested to promote angiogene-
sis (Zadora et al. 2017) and protect neuronal cells against apopto-
sis (Song et al. 2017) via up-regulation of IGF2 expression. Our
study observed that H19, IGF2-AS, and IGF2 may have lower
expression levels in placenta that have higher Cd concentrations,

Figure 3. Forest plot of associations between log-Cd and gene expression for DLX5, H19, NDN, IGF2-AS, IGF2, GRB10, and THSD7A within study- and sex-
specific strata (orange= female, blue =male), along with meta-analysis estimates across all four strata (black diamonds) (data for study and sex-specific associ-
ations are available in Excel Table S3, while inverse variance–weighted fixed-effects estimates are available in Excel Table S6). Note: Cd, cadmium; CI, confi-
dence interval; Coef., regression coefficient; DLX5, distal-less homeobox 5; GRB10, growth factor receptor bound protein 10; H19, h19 imprinted maternally
expressed transcript; IGF2, insulin-like growth factor 2; IGF2-AS, insulin-like growth factor 2 antisense 1; NDN, necdin, MAGE family member; NHBCS,
New Hampshire Birth Cohort Study; RICHS, Rhode Island Child Health Study; THSD7A, thrombospondin type 1 domain containing 7A.
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which may indicate Cd-associated disrupted activity of these cor-
egulated genes or an adaptive placental response to Cd exposure.
Other epidemiologic studies that have examined the relationships
between maternal Cd exposure and fetal epigenetic responses at
candidate ICR did not observe Cd-associated differential methyl-
ation at the H19/IGF2 ICR (Cowley et al. 2018; Vidal et al.
2015), which is not consistent with our findings. However, these
studies examined DNA methylation rather than expression, and
their molecular measures were obtained from maternal and cord
blood rather than placental tissues. It is possible that Cd-
associated responses differ across fetal tissues and that epige-
nomic and transcriptomic responses vary.

While the coregulation of H19 and IGF2 is a well-recognized
phenomenon, other imprinted genes can also be coregulated via a
shared ICR or potentially as part of a larger trans-regulatory
mechanism, similar to the imprinted gene network (IGN), which
has been thoroughly characterized in mice (Patten et al. 2016).
Early studies of the IGN found that altering the expression of a
few imprinted genes, ZAC1 or H19, could influence the expres-
sion patterns of a number of other imprinted genes (Gabory et al.
2009; Varrault et al. 2006). It has been suggested that the IGN
acts as a compensatory mechanism to regulate appropriate fetal
growth, which is supported by experimental mouse models in
which the majority of the IGN in the placenta was up-regulated
in response to assisted reproductive technologies, but the preg-
nancies produced phenotypically normal embryos (Fauque et al.
2010). In human placenta, the transcription factor PLAGL1 has
been shown to be coexpressed with a number of other imprinted
genes, most notably H19 and IGF2, suggesting that there may
also be an IGN for human placenta and that perturbations to the
human placental IGN is associated with growth restriction
(Iglesias-Platas et al. 2014). Although the expression of PLAGL1
was not associated with Cd in our study, both H19 and IGF2
were. We also observed numerous moderate to strong correlations
between the imprinted genes that were associated with Cd. Thus,
it is possible that our findings are related to larger perturbations to
the placental IGN rather than the Cd-associated responses of indi-
vidual imprinted genes.

We observed the most statistically significant and most con-
sistent relationships between Cd and expression of the imprinted
DLX5 gene. Of note, although this gene was not identified as
being differentially methylated in response to Cd in our prior
EWAS (Everson et al. 2018), approximately 20% of the CpGs
annotated to DLX5 were associated with Cd at a nominal

significance level (p<0:05), providing further evidence for the
relationship between its expression control and Cd exposure.
DLX5 is a transcription factor that is primarily recognized for its
involvement in bone growth and repair. DLX5 expression from
placental cells appears to decrease with increasing gestational
time (Novakovic et al. 2017), and loss of imprinting at DLX5
leads to increased expression, which has been shown to be up-
regulated in the placentas of preeclamptic pregnancies (Zadora
et al. 2017). Additionally, expression of DLX5 plays a critical
role in neurogenesis (Perera et al. 2004) and the development of
the olfactory and GnRH systems (Garaffo et al. 2015).
Interestingly, DLX5 may work in concert with necdin, produced
from the NDN gene, to regulate the differentiation of neuronal
cells (Kuwajima et al. 2006). The NDN gene, which was differen-
tially expressed in association with Cd in our study, plays impor-
tant roles in repressing the cell cycle and inhibiting cellular
growth, and is primarily expressed in post-mitotic neurons
(Taniguchi et al. 2000). Deletion of NDN leads to numerous
defects in the axonal migration, arborization, and growth of some
neuronal cells (Pagliardini et al. 2005), and NDN is a candidate
gene for Prader-Willi syndrome, a neurobehavioral condition
characterized by poor growth, feeding issues, developmental
delay, respiratory problems, and learning disabilities (Cheon
2016).

Overall, we found that female placentae tended to be more
likely to exhibit Cd-associated differential expression compared
with male placentae. The CPA4 gene, which is located within a
carboxypeptidase gene cluster on chromosome 7, was inversely
expressed in association with log-Cd only among female infants.
This gene is primarily recognized for its role in carcinogenesis
and cancer progression, appearing to be overexpressed in several
types of cancer (Sun et al. 2016a, 2016b). Although the func-
tional role of CPA4 in placental tissues is largely unknown, it has
been observed to be primarily expressed from the maternal allele
in fetal tissues and suggested as a potential candidate gene for
Silver-Russell syndrome (Bentley et al. 2003). In other tissues,
CPA4 has been implicated to be involved in inhibiting adipogen-
esis and modulating in insulin sensitivity (He et al. 2016).
Expression of the integrin-linked kinase (ILK) gene was posi-
tively correlated with placental Cd concentrations among females.
Placental expression of the ILK gene promotes trophoblast syncy-
tialization (Butler et al. 2017), while deletion of ILK leads to mul-
tiple vascular pathologies and placental insufficiency (Friedrich
et al. 2004), demonstrating the critical role of this gene in placental

Table 4. Parameter estimates of overall and sex-specific associations between placental gene expression levels with z-scores for birth weight, birth length, and
head circumference that were adjusted for maternal age, maternal educational attainment, and maternal smoking during pregnancy in all models and addition-
ally adjusted for maternal race/ethnicity in RICHS; these analyses were performed within the strata in which these genes yielded FDR-significant associations
(FDR q<0:05) with log-Cd.

Gene Strata

BW z-scores BL z-scores HC z-scores

Beta (95% CI) p-Value Beta (95% CI) p-Value Beta (95% CI) p-Value

DLX5 Overall −0:050 (−0:086, −0:014) 0.0070 −0:030 (−0:069, 0.0081) 0.12 −0:045 (−0:079, −0:011) 0.0089
H19 Overall 0.048 (0.014, 0.082) 0.0063 0.050 (0.013, 0.087) 0.0083 0.025 (−0:0094, 0.060) 0.15
NDN Overall 0.083 (0.041, 0.13) 0.000097 0.072 (0.027, 0.12) 0.0017 0.015 (−0:024, 0.054) 0.46
IGF2-AS Overall 0.021 (−0:24, 0.066) 0.36 0.016 (−0:029, 0.062) 0.49 0.014 (−0:025, 0.053) 0.47
IGF2 Overall 0.037 (−0:0075, 0.081) 0.10 0.044 (−0:0042, 0.092) 0.074 0.019 (−0:025, 0.063) 0.39
THSD7A Overall 0.0049 (−0:046, 0.055) 0.85 −0:015 (−0:068, 0.038) 0.59 −0:0057 (−0:052, 0.040) 0.81
CPA4 Female −0:023 (−0:095, 0.048) 0.53 −0:063 (−0:14, 0.010) 0.092 −0:0080 (−0:060, 0.044) 0.76

Male 0.078 (0.019, 0.14) 0.0095 0.062 (0.00093, 0.12) 0.047 0.080 (0.013, 0.15) 0.019
GRB10 Female −0:0099 (−0:055, 0.035) 0.66 0.0024 (−0:045, 0.050) 0.92 −0:00051 (−0:039, 0.038) 0.98

Male 0.017 (−0:025, 0.058) 0.43 0.044 (−0:0014, 0.090) 0.057 0.0061 (−0:043, 0.055) 0.81
ILK Female 0.0075 (−0:020, 0.035) 0.59 0.0074 (−0:021, 0.036) 0.62 0.0034 (−0:018, 0.025) 0.75

Male 0.042 (0.014, 0.069) 0.0027 0.044 (0.014, 0.074) 0.0036 0.041 (0.0094, 0.073) 0.011

Note: —, no data; BL, birth length; BW, birth weight; Cd, cadmium; CI, confidence interval; CPA4, carboxypeptidase A4; DLX5, distal-less homeobox 5; FDR, false discovery rate;
GRB10, growth factor receptor bound protein 10; HC, head circumference; H19, h19 imprinted maternally expressed transcript; IGF2, insulin-like growth factor 2; IGF2-AS, insulin-
like growth factor 2 antisense 1; ILK, integrin-linked kinase; NDN, necdin, MAGE family member; RICHS, Rhode Island Child Health Study; THSD7A, thrombospondin type 1 do-
main containing 7A.
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vascular development. We also found the GRB10 was more highly
expressed in female placenta with higher Cd concentrations.
Interestingly, a GRB10 ICR has been observed to be differentially
methylated in response to Cd exposure, although this association
was observed in maternal blood rather than fetal tissues (Cowley
et al. 2018). The expression of placental GRB10 has been shown
to inhibit placental growth and reduce placental efficiency in ex-
perimental models (Charalambous et al. 2010). This gene has also
been shown to regulate energy homeostasis (Liu et al. 2014) and
thus has implications for pathologies related to lipid metabolism,
thermogenesis, and adipogenesis.

Additionally, we observed an overall association with THSD7A,
whose expression was up-regulated in association with Cd.
Although this gene did not yield a statistically significant interac-
tion term, the magnitudes of association were more pronounced
among female placenta in our study, and this gene had previously
been identified to be differentially methylated in the cord blood of
female infants in association with maternal Cd exposure, but not
male infants (Kippler et al. 2013). Given that we did observe more
pronounced Cd associations among female placenta in both
RICHS and NHBCS, it is possible that we were merely underpow-
ered to detect a statistically significant interaction for this gene.
The Cd-associated differences in the activity and regulation of
THSD7A, generated from two independent studies, using different
molecular markers (DNA methylation and gene expression) that
were measured in different tissues (cord blood and placenta), are
quite striking and deserve additional study to elucidate the role
that this gene may play in Cd-associated developmental and repro-
ductive toxicity, especially for female infants. THSD7A has been
shown to be highly expressed in placental vasculature, particularly
at the leading end of human umbilical vein endothelial cells
(Wang et al. 2010), and thus could play an important role in the
appropriate vascularization of the placenta. Additionally, zebrafish
models have demonstrated that knockdown of THSD7A can cause
angiogenic defects (Wang et al. 2011) and that it plays critical
roles in promoting the development of the nervous and vascular
systems (Liu et al. 2016). THSD7A has also been shown to be
expressed in human trophoblast subtypes and associated with
trophoblast invasion, while it appears to be down-regulated among
placentae that are complicated by severe preeclampsia and down-
regulated with hypoxia (Luo et al. 2016).

Some epidemiologic studies have found that female infants
appear to be more susceptible to Cd-associated reductions in an-
thropometric measures (Kippler et al. 2012a; Taylor et al. 2016).
Although our study focused on the relationships between Cd and
imprinted expression patterns rather than anthropometry, we did
observe a greater number of nominally significant and FDR-
significant associations between log-Cd and imprinted expression
among the placenta of female infants. Thus, the Cd-associated
molecular and functional responses in the placenta may be more
pronounced among female infants, which may, in part, explain
their increased susceptibility to growth restriction.

Cigarette smoke is recognized to be a primary source of cad-
mium exposure among smokers and has been shown to alter pla-
cental morphology (Jauniaux and Burton 2007) and associate
with perturbations to the placental epigenome and/or transcrip-
tome (Bruchova et al. 2010; Morales et al. 2016). Although we
adjusted for self-reported smoking during pregnancy in all mod-
els, we also performed a sensitivity analysis by excluding all
samples from which the mothers reported any smoking during
pregnancy. Among nonsmokers, we observed the same associa-
tions between Cd and imprinted gene expression, with very high
correlations between regression coefficients before and after
excluding smokers. Thus, our findings are likely independent of
the potential confounding effects of smoking during pregnancy.

We also tested whether race may act as an effect modifier, rather
than just as a potential confounder of the associations between
imprinted gene expression and placental Cd. None of the genes
that yielded FDR-significant associations with Cd (DLX5, H19,
NDN, IGF2-AS, IGF2, THSD7A, CPA4, GRB10, or ILK) had
statistically significant interactions with maternal race. However,
a subset of imprinted genes did exhibit associations with placen-
tal Cd that may differ among racial subgroups in the RICHS
study: CYR61, CDKN1C, COPG2, and SGCE. These analyses
could only compare the associations between white vs. nonwhite
mothers due to small sample sizes within the specific racial sub-
groups. Additionally, these models could not be tested in a meta-
analytic framework due to NHBCS being racially homogenous.
Thus, further study with larger sample sizes and more heteroge-
nous populations is needed to better understand whether and how
placental imprinted genes respond to Cd within racial and ethnic
subgroups.

Some of the observed associations yielded more homogene-
ous associations with Cd, while others were fairly heterogenous
within strata of sex and study site. Among the genes that yielded
overall associations with Cd in, only DLX5 yielded homogenous
results across all four strata. Additionally, the associations
between DLX5 expression and birth weight z-scores were the
most homogenous among the analyses of birth size. We were
unable to disentangle why the RICHS female subgroup produced
null results, while all three of the other strata yielded relatively
strong inverse relationships with H19, IGF2-AS, and IGF2. This
same pattern of associations (null for RICHS females and strong
for all other strata) was also observed for NDN. Additionally,
THSD7A did not meet our criteria for a sex-specific association
with Cd, although it did have an interaction p-value (p=0:0596)
close to our threshold and produced consistently weak or null
associations among males and substantially stronger positive
associations among females. Because of this heterogeneity,
the associations for these genes needs to be interpreted with
caution and explored further for both sex-specific and overall
relationships with prenatal Cd exposure. We have also previ-
ously studied the associations between placental Cd and placental
DNA methylation (Everson et al. 2018). Although the imprinted
genes from the current study were not differentially methylated at
an FDR threshold for statistical significance in that study, we
showed that four genes (DLX5, IGF2, IGF2-AS, and GRB10) were
enriched for nominal levels of differential methylation, providing
an additional layer of evidence that the regulation of these genes
may be influenced by placental Cd concentrations.

In summary, we identified Cd-associated gene expression in
placental tissue in nine genes. These associations appear to be
specific to female placenta for CPA4, GRB10, and ILK, while the
associations with DLX5, H19, NDN, IGF2-AS, IGF2, and
THSD7A were not sex specific. These findings were independent
of MSDP and are consistent with prior work showing an apparent
greater susceptibility to the effects of Cd among female fetuses.
We found that the expression of some of these Cd-associated
genes were also associated with birth weight, birth length, and
head circumference. Higher placental expression of DLX5, which
was the top hit from the Cd association models, was observed to
be inversely associated with birth weight and birth length. These
findings provide mechanistic insights into how Cd may elicit
some of its toxic effects on growth and development via per-
turbed expression of placental imprinted genes.
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